By Topic

Solving the Class Responsibility Assignment Problem in Object-Oriented Analysis with Multi-Objective Genetic Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bowman, M. ; Dept. of Syst. & Comput. Eng., Carleton Univ., Ottawa, ON, Canada ; Briand, L.C. ; Labiche, Y.

In the context of object-oriented analysis and design (OOAD), class responsibility assignment is not an easy skill to acquire. Though there are many methodologies for assigning responsibilities to classes, they all rely on human judgment and decision making. Our objective is to provide decision-making support to reassign methods and attributes to classes in a class diagram. Our solution is based on a multi-objective genetic algorithm (MOGA) and uses class coupling and cohesion measurement for defining fitness functions. Our MOGA takes as input a class diagram to be optimized and suggests possible improvements to it. The choice of a MOGA stems from the fact that there are typically many evaluation criteria that cannot be easily combined into one objective, and several alternative solutions are acceptable for a given OO domain model. Using a carefully selected case study, this paper investigates the application of our proposed MOGA to the class responsibility assignment problem, in the context of object-oriented analysis and domain class models. Our results suggest that the MOGA can help correct suboptimal class responsibility assignment decisions and perform far better than simpler alternative heuristics such as hill climbing and a single-objective GA.

Published in:

Software Engineering, IEEE Transactions on  (Volume:36 ,  Issue: 6 )