Cart (Loading....) | Create Account
Close category search window
 

A Fast Multiple Longest Common Subsequence (MLCS) Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Qingguo Wang ; Dept. of Comput. Sci., Univ. of Missouri, Columbia, MO, USA ; Korkin, D. ; Yi Shang

Finding the longest common subsequence (LCS) of multiple strings is an NP-hard problem, with many applications in the areas of bioinformatics and computational genomics. Although significant efforts have been made to address the problem and its special cases, the increasing complexity and size of biological data require more efficient methods applicable to an arbitrary number of strings. In this paper, we present a new algorithm for the general case of multiple LCS (or MLCS) problem, i.e., finding an LCS of any number of strings, and its parallel realization. The algorithm is based on the dominant point approach and employs a fast divide-and-conquer technique to compute the dominant points. When applied to a case of three strings, our algorithm demonstrates the same performance as the fastest existing MLCS algorithm designed for that specific case. When applied to more than three strings, our algorithm is significantly faster than the best existing sequential methods, reaching up to 2-3 orders of magnitude faster speed on large-size problems. Finally, we present an efficient parallel implementation of the algorithm. Evaluating the parallel algorithm on a benchmark set of both random and biological sequences reveals a near-linear speedup with respect to the sequential algorithm.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:23 ,  Issue: 3 )

Date of Publication:

March 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.