By Topic

Optimizing ultrasonic transducers based on piezoelectric composites using a finite-element method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Challande, P. ; Lab. de Mecanique Phys., St.-Cyr l''Ecole, France

A novel approach to understanding the vibratory behavior of composite piezoelectric materials is proposed. Elementary ceramic rods, and the effects of their width-to-thickness (W/T) ratio are studied. A model based on the finite-element methods is used. Some experimental results that agree well with the computed data are presented. Plots of resonant frequencies and coupling coefficients versus W/T are given that can be used in transducer design.<>

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:37 ,  Issue: 3 )