By Topic

Efficient Sequential Correspondence Selection by Cosegmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jan Cech ; Czech Technical University, Prague ; Jiri Matas ; Michal Perdoch

In many retrieval, object recognition, and wide-baseline stereo methods, correspondences of interest points (distinguished regions) are commonly established by matching compact descriptors such as SIFTs. We show that a subsequent cosegmentation process coupled with a quasi-optimal sequential decision process leads to a correspondence verification procedure that 1) has high precision (is highly discriminative), 2) has good recall, and 3) is fast. The sequential decision on the correctness of a correspondence is based on simple statistics of a modified dense stereo matching algorithm. The statistics are projected on a prominent discriminative direction by SVM. Wald's sequential probability ratio test is performed on the SVM projection computed on progressively larger cosegmented regions. We show experimentally that the proposed sequential correspondence verification (SCV) algorithm significantly outperforms the standard correspondence selection method based on SIFT distance ratios on challenging matching problems.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:32 ,  Issue: 9 )