By Topic

ePUMA: A novel embedded parallel DSP platform for predictable computing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jian Wang ; Dept. of Electr. Eng., Linkoping Univ., Linkoping, Sweden ; Sohl, J. ; Kraigher, O. ; Liu, D.

In this paper, a novel parallel DSP platform based on master-multi-SIMD architecture is introduced. The platform is named ePUMA [1]. The essential technology is to use separated data access kernels and algorithm kernels to minimize the communication overhead of parallel processing by running the two types of kernels in parallel. ePUMA platform is optimized for predictable computing. The memory subsystem design that relies on regular and predictable memory accesses can dramatically improve the performance according to benchmarking results. As a scalable parallel platform, the chip area is estimated for different number of co-processors. The aim of ePUMA parallel platform is to achieve low power high performance embedded parallel computing with low silicon cost for communications and similar signal processing applications.

Published in:

Education Technology and Computer (ICETC), 2010 2nd International Conference on  (Volume:5 )

Date of Conference:

22-24 June 2010