By Topic

Volt/Var Control on Distribution Systems with Lateral Branches Using Switched Capacitors and Voltage Regulators, Part I: The Overall Problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
J. J. Grainger ; North Carolina State University Raleigh, NC ; S. Civanlar

In this paper (Part I) and two companion papers (Part II and Part III) the problem of volt/var control on general radial distribution systems is formulated, simplified and solved. The objective is to minimize the peak power and energy losses while keeping the voltage within specified limits under varying load conditions. The decision variables to be optimally determined are (i) the locations, sizes and the real-time control of the specified number of ON/OFF switched and fixed capacitors and (ii) the locations and real-time control of the minimum number of voltage regulators. It is shown in this paper (Part I) that the regulator (volt) and the capacitor (var) problem may be treated as two decoupled problems. Part II of this set of three papers, conjoined with part I, provides the analytical tools by which optimal solutions for both problems may be determined. Application of the theory to representative radial systems is shown in Part III which also illustrates the ecomonic benefits and numerical results achievable through both regulation and compensation schemes.

Published in:

IEEE Power Engineering Review  (Volume:PER-5 ,  Issue: 11 )