By Topic

A United Approach to Optimal Real and Reactive Power Dispatch

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
K. Y. Lee ; Department of Electrical Engineering, University of Houston, Houston, TX ; Y. M. Park ; J. L. Ortiz

This paper presents a unified method for optimal real and reactive power dispatch for the economic operation of power systems. As in other methods, the problem is decomposed into a P-optimization module and a Q-optimization module, but in this method both modules use the same generation cost-objective function. The control variables are generator real power outputs for the real power module; and generator reactive power outputs, shunt capacitors/reactors, and transformer tap settings for the reactive power module. The constraints are the operating limits of the control variables, power line flows, and bus voltages. The optimization problem is solved using the gradient projection method (GPM) which is used for the first time in the power systems study. The GPM allows the use of functional constraints without the need of penalty functions or Lagrange multipliers among other advantages. Mathematical models are developed to represent the sensitivity tivity relationships between dependent and control variables for both, real and reactive power, optimization modules, and thus eliminate the use of B-coefficients. Results of two test systems are presented and compared with conventional methods.

Published in:

IEEE Power Engineering Review  (Volume:PER-5 ,  Issue: 5 )