By Topic

Flexible electronic assemblies for space applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Del Castillo, L. ; Jet Propulsion Lab., California Inst. of Technol., Pasadena, CA, USA ; Moussessian, A. ; McPherson, R. ; Tan Zhang
more authors

This describes the development and evaluation of advanced technologies for the integration of electronic devices within membrane polymers. Specifically, investigators thinned silicon die, electrically connecting them with circuits on flexible (liquid crystal polymer (LCP) and polyimide (PI)) circuits, using gold thermo-compression flip chip bonding, and embedding them within the material. The influence of temperature and flexure on the electrical behavior of active embedded assemblies was evaluated. In addition, the long-term thermal cycle resistance of the passive daisy chain assemblies was determined within the Mil-Std (-55° to +125°C), extreme low #1 (-125° to +85°C), and extreme low #2 (-125° to +125°C) temperature ranges. The results of these evaluations will be discussed, along with the application of this technology for future NASA missions.

Published in:

Aerospace and Electronic Systems Magazine, IEEE  (Volume:25 ,  Issue: 6 )