By Topic

Prototype of Video Endoscopic Capsule With 3-D Imaging Capabilities

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kolar, A. ; CURIE-Paris VI Equipe SYEL, Univ. Pierre et Marie, Paris, France ; Romain, O. ; Ayoub, J. ; Viateur, S.
more authors

Wireless video capsules can now carry out gastroenterological examinations. The images make it possible to analyze some diseases during postexamination, but the gastroenterologist could make a direct diagnosis if the video capsule integrated vision algorithms. The first step toward in situ diagnosis is the implementation of 3-D imaging techniques in the video capsule. By transmitting only the diagnosis instead of the images, the video capsule autonomy is increased. This paper focuses on the Cyclope project, an embedded active vision system that is able to provide 3-D and texture data in real time. The challenge is to realize this integrated sensor with constraints on size, consumption, and processing, which are inherent limitations of the video capsule. We present the hardware and software development of a wireless multispectral vision sensor which enables the transmission of the 3-D reconstruction of a scene in real time. An FPGA-based prototype has been designed to show the proof of concept. Experiments in the laboratory, in vitro, and in vivo on a pig have been performed to determine the performance of the 3-D vision system. A roadmap towardthe integrated system is set out.

Published in:

Biomedical Circuits and Systems, IEEE Transactions on  (Volume:4 ,  Issue: 4 )