By Topic

Secondary Forecasting Based on Deviation Analysis for Short-Term Load Forecasting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yang Wang ; Dept. of Electr. Eng., Tsinghua Univ., Beijing, China ; Qing Xia ; Chongqing Kang

Short-term load forecasting (STLF) is the basis of power system planning and operation. With regard to the fast-growing load in China, a novel two-stage hybrid forecasting method is proposed in this paper. In the first stage, daily load is forecasted by time-series methods; in the second stage, the deviation caused by time-series methods is forecasted considering the impact of relative factors, and then is added to the result of the first stage. Different from other conventional methods, this paper does an in-depth analysis on the impact of relative factors on the deviation between actual load and the forecasting result of traditional time-series methods. On the basis of this analysis, an adaptive algorithm is proposed to perform the second stage which can be used to choose the most appropriate algorithm among linear regression, quadratic programming, and support vector machine (SVM) according to the characteristic of historical data. These ideas make the forecasting procedure more accurate, adaptive, and effective, comparing with SVM and other prevalent methods. The effectiveness has been demonstrated by the experiments and practical application in China.

Published in:

Power Systems, IEEE Transactions on  (Volume:26 ,  Issue: 2 )