By Topic

Data-fusion design for a robotic human body pose recognition system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yu-Hung Lai ; Department of Electrical Engineering, National Chiao Tung University, Hsinchu, Taiwan R.O.C. ; Kai-Tai Song

Real-time body pose information is very useful for many human-robot interaction applications. However, due to the motion of both human and the robot, robust body pose recognition poses a challenge in such a system design. This paper aims to locate a human body initially in the acquired image plane and then classify six body poses through image recognition. Color-space techniques and the method of connected component are used to detect ellipse shape and the shape patterns are used to locate human body in the video stream. Furthermore, a neutral network has been designed to fuse data from image recognition and inertial sensors to improve the recognition rate under various environmental variations. Experimental results show that the average recognition rate of six body poses is 93.5%, an improvement from 79.23% and 90.67% of using only image recognition and inertial sensor respectively.

Published in:

Control and Automation (ICCA), 2010 8th IEEE International Conference on

Date of Conference:

9-11 June 2010