Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Blind Extraction of Global Signal From Multi-Channel Noisy Observations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Washizawa, Y. ; Lab. for Adv. Brain Signal Process., RIKEN, Saitama, Japan ; Yamashita, Y. ; Tanaka, T. ; Cichocki, A.

We propose a novel efficient method of blind signal extraction from multi-sensor networks when each observed signal consists of one global signal and local uncorrelated signals. Most of existing blind signal separation and extraction methods such as independent component analysis have constraints such as statistical independence, non-Gaussianity, and underdetermination, and they are not suitable for global signal extraction problem from noisy observations. We developed an estimation algorithm based on alternating iteration and the smart weighted averaging. The proposed method does not have strong assumptions such as independence or non-Gaussianity. Experimental results using a musical signal and a real electroencephalogram demonstrate the advantage of the proposed method.

Published in:

Neural Networks, IEEE Transactions on  (Volume:21 ,  Issue: 9 )