By Topic

Adaptive Fault-Tolerant Tracking Control of Near-Space Vehicle Using Takagi–Sugeno Fuzzy Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bin Jiang ; Coll. of Autom. Eng., Nanjing Univ. of Aeronaut. & Astronaut., Nanjing, China ; Zhifeng Gao ; Peng Shi ; Yufei Xu

Based on the adaptive-control technique, this paper deals with the problem of fault-tolerant tracking control for near-space-vehicle (NSV) attitude dynamics. First, Takagi-Sugeno (T-S) fuzzy models are used to describe the NSV attitude dynamics; then, an actuator-fault model is developed. Next, an adaptive fault-tolerant tracking-control scheme is proposed based on the online estimation of actuator faults, in which a compensation control term is introduced in order to reduce the effect of actuator faults. Compared with some existing results of fault-tolerant control (FTC) in nonlinear systems, the technique presented in this paper is not dependent on fault detection and isolation (FDI) mechanism and is easy to implement in aerospace-engineering applications. Finally, simulation results are given to illustrate the effectiveness and potential of the proposed FTC scheme.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:18 ,  Issue: 5 )