By Topic

Toward the Development of a Hand-Held Surgical Robot for Laparoscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ali Hassan Zahraee ; Institut des Systems Intelligents et de Robotique, Université Pierre et Marie Curie–Paris VI, Paris, France ; Jamie Kyujin Paik ; Jerome Szewczyk ; Guillaume Morel

Minimally invasive surgery (MIS), which typically involves endoscopic camera and laparoscopic instruments may seem to be the ideal surgical procedure for its apparent benefits. However, in comparison to open surgeries, the spatial and mechanical tool limitations posed on surgeons are so high that often MIS is foregone for complex cases and even when it is possible, the procedure requires a high dexterity, caliber, and experience from the surgeon. Particularly, suturing procedure through MIS is known to be extremely challenging. We are working toward the development of a robotic hand-held surgical device for laparoscopic interventions that enhances the surgeons' dexterity. The instrument produces two independent DOFs, which is sufficient for enabling MIS suturing procedure in vivo. The end-effector's orientation is controlled by an intuitive and ergonomic controller and its position is controlled directly by the surgeon. Different control modes, handles, and end-effector kinematics are primarily evaluated using a virtual reality simulator before choosing the best combination. A proof-of-concept prototype of the device has been developed.

Published in:

IEEE/ASME Transactions on Mechatronics  (Volume:15 ,  Issue: 6 )