By Topic

Using Doppler Spectra to Separate Hydrometeor Populations and Analyze Ice Precipitation in Multilayered Mixed-Phase Clouds

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Rambukkange, M.P. ; Dept. of Meteorol., Pennsylvania State Univ., University Park, PA, USA ; Verlinde, J. ; Eloranta, E.W. ; Flynn, C.J.
more authors

Multimodality of cloud radar Doppler spectra is used to partition cloud particle phases and separate distinct ice populations in the radar sample volume, thereby facilitating the analysis of individual ice showers in multilayered mixed-phase clouds. A 35-GHz cloud radar located at Barrow, Alaska, during the Mixed-Phase Arctic Cloud Experiment collected the Doppler spectra. Data from a pair of collocated depolarization lidars confirmed the presence of two liquid cloud layers reported in this letter. Both of these cloud layers were embedded in ice precipitation yet maintained their liquid. The spectral separation of the ice precipitation yielded two distinct ice populations: the ice initiated within the two liquid cloud layers and the ice precipitation formed in the higher cloud layers. The comparisons of ice fall velocity-versus-radar reflectivity relationships derived for distinct showers reveal that a single relationship does not properly represent the ice showers during this period.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:8 ,  Issue: 1 )