By Topic

RDE-based transistor-level gate simulation for statistical static timing analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Qin Tang ; Circuits & Syst. Group, Delft Univ. of Technol., Delft, Netherlands ; Zjajo, A. ; Berkelaar, M. ; van der Meijs, N.

Existing industry-practice statistical static timing analysis (SSTA) engines use black-box gate-level models for standard cells, which have accuracy problems as well as require massive amounts of CPU time in Monte-Carlo (MC) simulation. In this paper we present a new transistor-level non-Monte Carlo statistical analysis method based on solving random differential equations (RDE) computed from modified nodal analysis (MNA). In order to maintain both high accuracy and efficiency, we introduce a simplified statistical transistor model for 45nm technology and below. The model is combined with our new simulation-like engine which can do both implicit non-MC statistical simulation and deterministic simulation fast and accurately. The statistics of delay and slew are calculated by means of the proposed analysis method. Experiments show the proposed method is both run time efficient and very accurate.

Published in:

Design Automation Conference (DAC), 2010 47th ACM/IEEE

Date of Conference:

13-18 June 2010