By Topic

LQG/LTR Flight Controller Optimal Design Based on Differential Evolution Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Meng Zhang ; Coll. of Autom., Northwestern Polytech. Univ., Xi''an, China ; Peiyong Sun ; Ruiting Cao ; Jiangle Zhu

In conventional Linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR) controller design, the designer should experiment with four different weighting matrices by trial-and-error method in order to get the flying quality requirement and the robustness. This method is a time consuming, inefficient and non-optimal method. To solve this problem, a LQG/LTR flight controller optimal design method based on differential evolution algorithm is proposed in this paper. In the optimal design, a Kalman filter is optimal designed by optimizing two weighting matrices based on a reference model and differential evolution algorithm firstly. So the optimal target feedback loop which satisfies the performance requirement is obtained. Secondly, the principle of the aircraft equivalent system analog match is used for reference to design an optimal state feedback gain matrix by optimizing another two weighting matrices. To validate the effect of this optimal design method, a longitudinal LQG/LTR flight controller is optimal designed based on differential evolution algorithm. The simulation results show the high effectiveness of this optimal design method.

Published in:

Intelligent Computation Technology and Automation (ICICTA), 2010 International Conference on  (Volume:2 )

Date of Conference:

11-12 May 2010