Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Feature Selection Through Optimization of K-nearest Neighbor Matching Gain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yihui Luo ; Dept. of Inf., Hunan Univ. of Commerce, Changsha, China ; Shuchu Xiong

Many problems in information processing involve some form of dimensionality reduction. In this paper, we propose a new model for feature evaluation and selection in unsupervised learning scenarios. The model makes no special assumptions on the nature of the data set. For each of the data set, the original features induce a ranking list of items in its k nearest neighbors. The evaluation criterion favors reduced features that result in the most consistent to these ranked lists. And an efficiently local descent search based on the model is adopted to select the reduced features. Our experiments with several data sets demonstrate that the proposed algorithm is able to detect completely irrelevant features and to remove some additional features without significantly hurting the performance of the clustering algorithm.

Published in:

Intelligent Computation Technology and Automation (ICICTA), 2010 International Conference on  (Volume:2 )

Date of Conference:

11-12 May 2010