By Topic

EEG data compression techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
G. Antoniol ; Istituto per la Ricerca Sci. e Tecnologica, Trento, Italy ; P. Tonella

Electroencephalograph (EEG) and Holter EEG data compression techniques which allow perfect reconstruction of the recorded waveform from the compressed one are presented and discussed. Data compression permits one to achieve significant reduction in the space required to store signals and in transmission time. The Huffman coding technique in conjunction with derivative computation reaches high compression ratios (on average 49% on Holter and 58% on EEG signals) with low computational complexity. By exploiting this result a simple and fast encoder/decoder scheme capable of real-time performance on a PC was implemented. This simple technique is compared with other predictive transformations, vector quantization, discrete cosine transform (DCT), and repetition count compression methods. Finally, it is shown that the adoption of a collapsed Huffman tree for the encoding/decoding operations allows one to choose the maximum codeword length without significantly affecting the compression ratio. Therefore, low cost commercial microcontrollers and storage devices can be effectively used to store long Holter EEG's in a compressed format.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:44 ,  Issue: 2 )