Cart (Loading....) | Create Account
Close category search window
 

Multiuser detection in a horizontal underwater acoustic channel using array observations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gray, S.D. ; Nokia Mobile Phones, San Diego, CA, USA ; Preisig, J.C. ; Brady, D.

We present a multisensor, multiuser receiver that is capable of operating in an underwater acoustic channel with severe multipath. For each active user, the receiver consists of a multi-input, single-output array processing filter followed by a single-channel adaptive equalizer. The array processing filter is chosen to maximize an averaged performance metric which measures reduction in the interference from multiple asynchronous cochannel users and the reduction in intersymbol interference caused by time spreading of the transmitted signal. The single-channel adaptive equalizer that follows the array processing filter eliminates the remaining intersymbol interference prior to hard symbol decisions. The division of labor between the array processing filter and single-channel equalizer reduces receiver complexity by allowing the array processing filter weights to be based on the fixed deterministic channel component and the single-channel equalizer to be based on the stochastic channel component. Receiver performance is demonstrated using data obtained from two shallow-water acoustic channels where two cochannel users are transmitting in shallow water at 18 and 30 nautical miles from the receiver array

Published in:

Signal Processing, IEEE Transactions on  (Volume:45 ,  Issue: 1 )

Date of Publication:

Jan 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.