By Topic

Parallel implementation of backpropagation neural networks on a heterogeneous array of transputers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shou King Foo ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Inst., Singapore ; Saratchandran, P. ; Sundararajan, N.

This paper analyzes parallel implementation of the backpropagation training algorithm on a heterogeneous transputer network (i.e., transputers of different speed and memory) connected in a pipelined ring topology. Training-set parallelism is employed as the parallelizing paradigm for the backpropagation algorithm. It is shown through analysis that finding the optimal allocation of the training patterns amongst the processors to minimize the time for a training epoch is a mixed integer programming problem. Using mixed integer programming optimal pattern allocations for heterogeneous processor networks having a mixture of T805-20 (20 MHz) and T805-25 (25 MHz) transputers are theoretically found for two benchmark problems. The time for an epoch corresponding to the optimal pattern allocations is then obtained experimentally for the benchmark problems from the T805-20, TS805-25 heterogeneous networks. A Monte Carlo simulation study is carried out to statistically verify the optimality of the epoch time obtained from the mixed integer programming based allocations. In this study pattern allocations are randomly generated and the corresponding time for an epoch is experimentally obtained from the heterogeneous network. The mean and standard deviation for the epoch times from the random allocations are then compared with the optimal epoch time. The results show the optimal epoch time to be always lower than the mean epoch times by more than three standard deviations (3σ) for all the sample sizes used in the study thus giving validity to the theoretical analysis

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:27 ,  Issue: 1 )