Cart (Loading....) | Create Account
Close category search window
 

Size reduction by interpolation in fuzzy rule bases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Koczy, L.T. ; Dept. of Telecommun. & Telematics, Tech. Univ. Budapest, Hungary ; Hirota, K.

Fuzzy control is at present still the most important area of real applications for fuzzy theory. It is a generalized form of expert control using fuzzy sets in the definition of vague/linguistic predicates, modeling a system by If…then rules. In the classical approaches it is necessary that observations on the actual state of the system partly match (fire) one or several rules in the model (fired rules), and the conclusion is calculated by the evaluation of the degrees of matching and the fired rules. Interpolation helps reduce the complexity as it allows rule bases with gaps. Various interpolation approaches are shown. It is proposed that dense rule bases should be reduced so that only the minimal necessary number of rules remain still containing the essential information in the original base, and all other rules are replaced by the interpolation algorithm that however can recover them with a certain accuracy prescribed before reduction. The interpolation method used for demonstration is the Lagrange method supplying the best fitting minimal degree polynomial. The paper concentrates on the reduction technique that is rather independent from the style of the interpolation model, but cannot be given in the form of a tractable algorithm. An example is shown to illustrate possible results and difficulties with the method

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:27 ,  Issue: 1 )

Date of Publication:

Feb 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.