By Topic

A Supervised Approach for Predicting Patient Survival with Gene Expression Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Karthik Devarajan ; Div. of Population Sci., Fox Chase Cancer Center, Philadelphia, PA, USA ; Yan Zhou ; Neeraj Chachra ; Nader Ebrahimi

Rapid development in genomics in recent years has allowed the simultaneous measurement of the expression levels of thousands of genes using DNA microarrays. This has offered tremendous potential for growth in our understanding of the pathophysiology of many diseases. When microarray studies also contain information about an outcome variable such as time to an event or death, one of the goals of an investigator is to understand how the expression levels of genes (covariates) relate to the time-to-event (referred to as survival time) in the course of a disease. In this article, we examine the problem of predicting the survival probability of patients when the number of covariates exceeds the number of observations, a setting typical of microarray gene expression data. This is an ill-conditioned problem further compounded by the presence of possibly censored survival times. We propose a model that combines the partial least squares approach for dimensionality reduction with the accelerated failure time model, a widely used log-linear model for linking censored survival time to covariates. We develop parametric methods to account for censoring as well as for predicting patient survival probabilities. We illustrate the applicability of our methods using cancer microarray data and explore the biological relevance of our results using pathway analysis. Finally, we evaluate the performance of our methods using extensive simulation studies.

Published in:

BioInformatics and BioEngineering (BIBE), 2010 IEEE International Conference on

Date of Conference:

May 31 2010-June 3 2010