Cart (Loading....) | Create Account
Close category search window
 

BLAST Tree: Fast Filtering for Genomic Sequence Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
King, S. ; Comput. Sci., Michigan State Univ., East Lansing, MI, USA ; Yanni Sun ; Cole, J. ; Pramanik, S.

With the advent of next-generation sequencing and culture-independent methods, we now are accumulating an enormous amount of metagenomic data from microbial communities. These data sets are large, hard to assemble, and might encode rare or novel proteins, posing new computational challenges for protein homology search. This paper presents a novel protein homology search algorithm that combines the salient features of pairwise sequence alignment programs such as Blast and protein family based tools such as Hmmer. It is optimized for protein annotation in metagenomic data sets because: 1) it is fast, 2) it can classify short protein fragments encoded by individual sequence reads, 3) it can find homologs to novel or rare protein families when there is not enough member sequences to build a probabilistic model. Our algorithm builds a new indexing data structure called BlastTree, which can index a large sequence family database because of our effective compression techniques. In addition, BlastTree fully exploits sequence family membership information to improve homology search sensitivity. When the BlastTree Search algorithm is incorporated into Hmmer, it runs in a fraction of the time with comparable quality.

Published in:

BioInformatics and BioEngineering (BIBE), 2010 IEEE International Conference on

Date of Conference:

May 31 2010-June 3 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.