By Topic

Ethanol Effects on Transcription Factor Network Regulating Stem Cell Differentiation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rajanikanth Vadigepalli ; Dept. of Pathology, Thomas Jefferson Univ., Philadelphia, PA, USA ; Joshua Ogony ; Helen Anni

This study probes the effects of ethanol on the molecular mechanisms regulating the differentiation of embryonic stem (ES) cells towards neuroectodermal state, which may be responsible for the abnormalities observed in fetal alcohol spectrum disorders (FASD). The effects of ethanol on the early phase of ES cell differentiation have not been well characterized. Here, we investigate the stage-specific action of ethanol during early embryogenesis by an integrated experimental and computational modeling approach. Our experimental system consists of mouse ES cells and directed differentiation to neuroectodermal fate in the presence of ethanol. Experimental single-cell multiplex data on the expression of the ES core transcription factors (TFs), Sox2, Oct4 and Nanog were obtained simultaneously by multicolor flow cytometry in live cells. Single-cell flow cytometric data were analyzed by ARACNE probabilistic modeling to construct transcriptional regulatory networks and quantify the TFs interactions in a pairwisemanner. Our analysis indicates that during differentiation towards neuroectodermal fate ethanol accelerates (i) the decline of the expression levels of Sox2 and Nanog, and (ii) the decreasing strength of the correlative interactions between the core TFs which is also reflected in (iii) an advanced differentiation phenotype.

Published in:

BioInformatics and BioEngineering (BIBE), 2010 IEEE International Conference on

Date of Conference:

May 31 2010-June 3 2010