By Topic

Minimum Separating Circle for Bichromatic Points in the Plane

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bitner, S. ; Dept. of Comput. Sci., Univ. of Texas at Dallas, Richardson, TX, USA ; Yam Cheung ; Daescu, O.

Consider two point sets in the plane, a red set of size n, and a blue set of size m. In this paper we show how to find the minimum separating circle, which is the smallest circle that contains all points of the red set and as few points as possible of the blue set in its interior. If multiple minimum separating circles exist our algorithm finds all of them. We also give an exact solution for finding the largest separating circle that contains all points of the red set and as few points as possible of the blue set in its interior. Our solutions make use of the farthest neighbor Voronoi Diagram of point sites.

Published in:

Voronoi Diagrams in Science and Engineering (ISVD), 2010 International Symposium on

Date of Conference:

28-30 June 2010