By Topic

Maximum-likelihood multiresolution laser radar range imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
D. R. Greer ; Dept. of Electr. Eng. & Comput. Sci., MIT, Cambridge, MA, USA ; I. Fung ; J. H. Shapiro

Maximum-likelihood range imaging is considered for pulsed-imager operation of a coherent laser radar. The expectation-maximization (EM) algorithm is used to develop an explicit procedure for maximum-likelihood fitting of a multiresolution (wavelet) basis-at a sequence of increasingly fine resolutions-to laser radar range data. Specialization to the Haar-wavelet basis yields a procedure that is both computationally efficient and numerically robust. Basic analytical properties of the estimation algorithm and its performance are presented, along with results based on simulated and real laser radar range data. It is shown that the weights associated with the expectation-maximization iterations provide a reliable indicator for terminating the coarse-to-fine resolution progression. At the weight-determined stopping point, estimation performance approaches the ultimate limit set by the complete-data bound

Published in:

IEEE Transactions on Image Processing  (Volume:6 ,  Issue: 1 )