By Topic

Algorithms for approximate FSM traversal based on state space decomposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hyunwoo Cho ; Dept. of Electr. & Comput. Eng., Colorado Univ., Boulder, CO, USA ; Hachtel, G.D. ; Macii, E. ; Plessier, B.
more authors

This paper presents algorithms for approximate finite state machine traversal based on state space decomposition. The original finite state machine is partitioned in component submachines, and each of them is traversed separately; the result of the computation is an over-estimation of the set of reachable states of the original machine. Different traversal strategies, which reduce the effects of the degrees of freedom introduced by the decomposition, are discussed. Efficient partitioning is a key point for the performance of the traversal techniques; a method to heuristically find a good decomposition of the overall finite state machine, based on the exploration of its state variable dependency graph, is proposed. Applications of the approximate traversal methods to logic optimization of sequential circuits and behavioral verification of finite state machines are described; experimental results for such applications, together with data concerning pure traversal, are reported

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:15 ,  Issue: 12 )