By Topic

Static and dynamic channel assignment using neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
K. Smith ; Dept. of Bus. Syst., Monash Univ., Clayton, Vic., Australia ; M. Palaniswami

We examine the problem of assigning calls in a cellular mobile network to channels in the frequency domain. Such assignments must be made so that interference between calls is minimized, while demands for channels are satisfied. A new nonlinear integer programming representation of the static channel assignment (SCA) problem is formulated. We then propose two different neural networks for solving this problem. The first is an improved Hopfield (1982) neural network which resolves the issues of infeasibility and poor solution quality which have plagued the reputation of the Hopfield network. The second approach is a new self-organizing neural network which is able to solve the SCA problem and many other practical optimization problems due to its generalizing ability. A variety of test problems are used to compare the performance of the neural techniques against more traditional heuristic approaches. Finally, extensions to the dynamic channel assignment problem are considered

Published in:

IEEE Journal on Selected Areas in Communications  (Volume:15 ,  Issue: 2 )