By Topic

An open-walled ionization chamber appropriate to tritium monitoring for glovebox

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Chen, Zhilin ; Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Sichuan, Mianyang 621900, People’s Republic of China ; Chang, Ruiming ; Mu, Long ; Song, Guoyang
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3458012 

An open-walled ionization chamber is developed to monitor the tritium concentration in gloveboxes in tritium processing systems. Two open walls are used to replace the sealed wall in common ionization chambers, through which the tritium gas can diffuse into the chamber without the aid of pumps and pipelines. Some basic properties of the chamber are examined to evaluate its performance. Results turn out that an open-walled chamber of 1 l in volume shows a considerably flat plateau over 700 V for a range of tritium concentration. The chamber also gives a good linear response to gamma fields over 4 decades under a pressure condition of 1 atm. The pressure dependence characteristics show that the ionization current is only sensitive at low pressures. The pressure influence becomes weaker as the pressure increases mainly due to the decrease in the mean free path of β particles produced by tritium decay. The minimum detection limit of the chamber is 3.7×105 Bq/m3.

Published in:

Review of Scientific Instruments  (Volume:81 ,  Issue: 7 )