By Topic

A table-based bias and temperature-dependent small-signal and noise equivalent circuit model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Winson, P.B. ; Dept. of Electr. Eng., Univ. of South Florida, Tampa, FL, USA ; Lardizabal, S.M. ; Dunleavy, L.

A new algorithm is presented for construction of accurate table-based bias and temperature dependent field-effect transistor (FET) small-signal and noise models. The algorithm performs two-dimensional (2-D) linear interpolation on a single stored data table to quickly produce bias and temperature-dependent model simulations. Comparisons of simulated FET S-parameters, noise figure, and device figures of merit (e.g., Gmax) versus measured data show the model to be accurate over a wide range of bias and temperatures. Model enabled simulations of a single-stage FET-based low-noise monolithic microwave integrated circuit (MMIC) amplifier are also shown to compare favorably with measured amplifier data. The new algorithm improves on previously available approaches in three ways: (1) it allows efficient and accurate small signal device and circuit simulations over bias and temperature; (2) it allows circuit optimization with respect to bias and temperature; and (3) it provides substantial data storage reduction over alternate approaches. Because one compact data table represents a single sample device, the approach can be readily adapted for use in a statistical FET model data base

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:45 ,  Issue: 1 )