By Topic

Retrieval of optical depth and particle size distribution of tropospheric and stratospheric aerosols by means of Sun photometry

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
B. Schmid ; Inst. of Appl. Phys., Bern Univ., Switzerland ; C. Matzler ; A. Heimo ; N. Kampfer

Aerosol optical depth measurements by means of ground-based Sun photometry were made in Bern, Switzerland during two and a half years primarily to provide quantitative corrections for atmospheric effects in remotely sensed data in the visible and near-infrared spectral region. An investigation of the spatial variability of tropospheric aerosol was accomplished in the summer of 1994 in the Swiss Central Plain, a region often covered by a thick aerosol layer. Intercomparisons are made with two Sun photometers operated by the Swiss Meteorological Institute in Payerne (Swiss Central Plain) and Davos (Swiss Alps, 1590 m a.s.l.). By means of an inversion technique, columnar particle size distributions were derived from the aerosol optical depth spectra. Effective radius, columnar surface area, and columnar mass were computed from the inversion results. Most of the spectra measured in Bern exhibit an Angstrom-law dependence. Consequently, the inverted size distributions are very close to power-law distributions. Data collected during a four month calibration campaign in fall 1993 at a high-mountain station in the Swiss Alps (Jungfraujoch, 3580 m) allowed the authors to study optical properties of stratospheric aerosol. The extinction spectra measured have shown to be still strongly influenced by remaining aerosol of the June 1991 volcanic eruptions of Mount Pinatubo. Inverted particle size distributions can be characterized by a broad monodisperse peak with a mode radius around 0.25 μm. Both aerosol optical depths and effective radii had not yet returned to pre-eruption values. Comparison of retrieved aerosol optical depth, columnar surface area and mass, with the values derived from lidar observations performed in Garmisch-Partenkirchen, Southern-Germany, yielded good agreement

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:35 ,  Issue: 1 )