By Topic

Millimeter wave radar scattering from model ice crystal distributions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Aydin, K. ; Dept. of Electr. Eng., Pennsylvania State Univ., University Park, PA, USA ; Chengxian Tang

Dual-polarization radar observables of cloud ice crystals are simulated at 94 and 220 GHz frequencies. Three crystal shapes are considered: hexagonal columns, hexagonal plates, and stellar crystals. A gamma model size distribution and a three dimensional (3D) canting distribution are used. The radar observables are displayed as a function of radar elevation angle. The linear depolarization ratios LDRh and LDRv, the circular depolarization ratio CDR, and the magnitude of the copolarized cross correlation coefficient ρhv are found to be useful for differentiating columns from plates and stellar crystals. These radar observables have different trends as a function of elevation angle for the model columns and planar crystals (plates and stellar crystals). Furthermore, at vertical incidence they exhibit significantly different values for the two crystal types

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:35 ,  Issue: 1 )