By Topic

An integrated CMOS time interval measurement system with subnanosecond resolution for the WA-98 calorimeter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Simpson, M.L. ; Oak Ridge Nat. Lab., TN, USA ; Britton, C.L. ; Wintenberg, A.L. ; Young, G.R.

The time interval measurement system of the WA-98 calorimeter is presented. This system consists of a constant fraction discriminator (CFD), a variable delay circuit, a time-to-amplitude converter (TAC), and a Wilkinson analog-to-digital converter (ADC) all realized in a 1.2-μm N-well CMOS process. These circuits measured the time interval between a reference logic signal and a photomultiplier tube (PMT) signal that had amplitude variations of 100:1 and 10-ns rise and fall times. The system operated over the interval range from 2 ns to 200 ns with a resolution of ~±300 ps including all walk and jitter components. The variable delay circuit allowed the CFD output to be delayed by up to 1 μs with a jitter component of ~0.04% of the delay setting. These circuits operated with a 5-V power supply. Although this application was in nuclear physics instrumentation, these circuits could also be useful in other scientific measurements, medical imaging, automatic test equipment, ranging systems, and industrial electronics

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:32 ,  Issue: 2 )