By Topic

Temporal Data Clustering via Weighted Clustering Ensemble with Different Representations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yun Yang ; Sch. of Comput. Sci., Univ. of Manchester, Manchester, UK ; Ke Chen

Temporal data clustering provides underpinning techniques for discovering the intrinsic structure and condensing information over temporal data. In this paper, we present a temporal data clustering framework via a weighted clustering ensemble of multiple partitions produced by initial clustering analysis on different temporal data representations. In our approach, we propose a novel weighted consensus function guided by clustering validation criteria to reconcile initial partitions to candidate consensus partitions from different perspectives, and then, introduce an agreement function to further reconcile those candidate consensus partitions to a final partition. As a result, the proposed weighted clustering ensemble algorithm provides an effective enabling technique for the joint use of different representations, which cuts the information loss in a single representation and exploits various information sources underlying temporal data. In addition, our approach tends to capture the intrinsic structure of a data set, e.g., the number of clusters. Our approach has been evaluated with benchmark time series, motion trajectory, and time-series data stream clustering tasks. Simulation results demonstrate that our approach yields favorite results for a variety of temporal data clustering tasks. As our weighted cluster ensemble algorithm can combine any input partitions to generate a clustering ensemble, we also investigate its limitation by formal analysis and empirical studies.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:23 ,  Issue: 2 )