By Topic

Dynamic shift mechanism of continuous attractors in a class of recurrent neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Haixian Zhang ; Sch. of Appl. Math., Univ. of Electron. Sci. & Technol. of China, Chengdu, China ; Zhang Yi

Continuous attractors of recurrent neural networks (RNNs) have attracted extensive interests in recent years. It is often used to describe the encoding of continuous stimuli such as orientation, moving direction and spatial location of objects. This paper studies the dynamic shift mechanism of a class of continuous attractor neural networks. It shows that if the external input is a gaussian shape with its center varying along with time, by adding a slight shift to the weights, the symmetry of gaussian weight function is destroyed. Then, the activity profile will shift continuously without changing its shape, and the shift speed can be controlled accurately by a given constant. Simulations are employed to illustrate the theory.

Published in:

Cybernetics and Intelligent Systems (CIS), 2010 IEEE Conference on

Date of Conference:

28-30 June 2010