Cart (Loading....) | Create Account
Close category search window

Effects of Nanometer-Scale Photonic Crystal Structures on the Light Extraction From GaN Light-Emitting Diodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Young Chul Shin ; Sch. of Electr. Eng., Korea Univ., Seoul, South Korea ; Dong Ho Kim ; Dong Ju Chae ; Ji Won Yang
more authors

This paper reports on the effect of nanometer-scale photonic crystal structures on the enhancement of the light extraction in GaN light-emitting diodes. Photonic crystals with hole or pillar-patterned structures with lattice constants of 460, 600, 750, and 920 nm are fabricated on indium-doped tin oxide (ITO) electrodes and/or p-GaN layers using laser holography and reactive ion etching. It is found that the light extraction efficiency depends strongly on the distance between the photonic crystal and the active layer, as well as the lattice constant for both structures. Photonic crystal light-emitting diodes (LEDs) with a lattice constant of 750 nm and hole depths of 260 nm in the ITO layer show an increase in light extraction of up to 32%, compared to conventional LEDs, without degradation in the electrical properties while a maximum enhancement of 26% is obtained from the device with a lattice constant of 460 nm and pillar heights of 60 nm on the p-GaN layer. The dependence of the extraction efficiency on the lattice constant is also calculated using a 3-D finite-difference time-domain method and compared with experimental results.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:46 ,  Issue: 9 )

Date of Publication:

Sept. 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.