By Topic

Area- and Power-Efficient Monolithic Buck Converters With Pseudo-Type III Compensation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wu, P.Y. ; Dept. of Electron. & Comput. Eng., Hong Kong Univ. of Sci. & Technol., Kowloon, China ; Tsui, S.Y.S. ; Mok, P.K.T.

Monolithic PWM voltage-mode buck converters with a novel Pseudo-Type III (PT3) compensation are presented. The proposed compensation maintains the fast load transient response of the conventional Type III compensator; while the Type III compensator response is synthesized by adding a high-gain low-frequency path (via error amplifier) with a moderate-gain high-frequency path (via bandpass filter) at the inputs of PWM comparator. As such, smaller passive components and low-power active circuits can be used to generate two zeros required in a Type III compensator. Constant Gm/C biasing technique can also be adopted by PT3 to reduce the process variation of passive components, which is not possible in a conventional Type III design. Two prototype chips are fabricated in a 0.35-μm CMOS process with constant Gm/C biasing technique being applied to one of the designs. Measurement result shows that converter output is settled within 7 μs for a load current step of 500 mA. Peak efficiency of 97% is obtained at 360 mW output power, and high efficiency of 86% is measured for output power as low as 60 mW. The area and power consumption of proposed compensator is reduced by > 75 % in both designs, compared to an equivalent conventional Type III compensator.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:45 ,  Issue: 8 )