Cart (Loading....) | Create Account
Close category search window
 

A Novel Magnetic-Levitation System: Design, Implementation, and Nonlinear Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hasirci, U. ; Electron. Eng. Dept., Gebze Inst. of Technol., Gebze, Turkey ; Balikci, A. ; Zabar, Z. ; Birenbaum, L.

This paper concerns the design, implementation, and nonlinear velocity-tracking control of a novel magnetic-levitation (maglev) system for magnetically levitated trains. The proposed system uses only one tubular linear induction motor to produce three forces required in a maglev system: propulsion, levitation, and guidance. Classical maglev systems, on the other hand, contain a separate force-generating system to build each of these three forces. Another benefit that the proposed system offers is that there is no need to control the guidance, and particularly, the levitation forces, one of the most challenging tasks in maglev systems. The system always centers the moving part during operation and eliminates the necessity for control of the levitation and guidance forces. However, the propulsion force strongly requires some control efforts because a linear induction motor has nonlinear system dynamics. This paper gives a condensed design guideline based on the mature theory of electromagnetic launchers, particularly the linear induction launcher type. It explains the implementation process, shows experimental test results, and finally, presents a nonlinear partial state-feedback controller for the proposed system.

Published in:

Plasma Science, IEEE Transactions on  (Volume:39 ,  Issue: 1 )

Date of Publication:

Jan. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.