By Topic

Diffuse Prior Monotonic Likelihood Ratio Test for Evaluation of Fused Image Quality Measures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chuanming Wei ; Electr. & Comput. Eng. Dept., Lehigh Univ., Bethlehem, PA, USA ; Kaplan, L.M. ; Burks, S.D. ; Blum, R.S.

This paper introduces a novel method to score how well proposed fused image quality measures (FIQMs) indicate the effectiveness of humans to detect targets in fused imagery. The human detection performance is measured via human perception experiments. A good FIQM should relate to perception results in a monotonic fashion. The method computes a new diffuse prior monotonic likelihood ratio (DPMLR) to facilitate the comparison of the H1 hypothesis that the intrinsic human detection performance is related to the FIQM via a monotonic function against the null hypothesis that the detection and image quality relationship is random. The paper discusses many interesting properties of the DPMLR and demonstrates the effectiveness of the DPMLR test via Monte Carlo simulations. Finally, the DPMLR is used to score FIQMs with test cases considering over 35 scenes and various image fusion algorithms.

Published in:

Image Processing, IEEE Transactions on  (Volume:20 ,  Issue: 2 )