By Topic

Removal of Ballistocardiogram Artifacts Using the Cyclostationary Source Extraction Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ghaderi, F. ; Sch. of Eng., Cardiff Univ., Cardiff, UK ; Nazarpour, K. ; McWhirter, J.G. ; Sanei, S.

Ballistocardiogram (BCG) artifact is considered here as the sum of a number of independent cyclostationary components having the same cycle frequency. Our proposed method, called cyclostationary source extraction (CSE), is able to extract these components without much destructive effect on the background electroencephalogram (EEG). It is shown that the proposed method outperforms other methods particularly in preserving the remaining signals. The CSE is utilized to remove the BCG artifact from real EEG data recorded inside the magnetic resonance (MR) scanner, i.e., visual evoked potential (VEP). The results are compared to the results of benchmark BCG removal techniques. Analyzing the power spectral density of the cleaned EEG data, it is shown that CSE effectively removes the frequency components corresponding to the BCG artifact. It is also shown that VEPs recorded inside the scanner and processed using the proposed method are more correlated with the VEPs recorded outside the scanner. Moreover, there is no need for electrocardiogram (ECG) data in this method as the cycle frequency of the BCG is directly computed from the contaminated EEG signals.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:57 ,  Issue: 11 )