By Topic

Simultaneous Observations and Analysis of Severe Storms Using Polarimetric X-Band SAR and Ground-Based Weather Radar

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jason P. Fritz ; Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, USA ; V. Chandrasekar

Recent advances in synthetic aperture radar (SAR) technology have revived meteorological applications with this type of radar. SARs are designed for surface imaging, but now that several X-band multipolarization SAR satellites are in orbit, the attenuation and backscatter caused by precipitation can be better studied. The results presented here demonstrate some of the possibilities by analyzing observations from dual-polarization (HH, VV) TerraSAR-X (TSX) acquisitions over central Florida surrounding severe storms in August 2008. Simultaneous to the SAR acquisitions, WSR-88D ground weather radars in Melbourne and Tampa Bay, FL, collected reflectivity and radial velocity data; the observed strong precipitation cells from convective storms are colocated with severe attenuation in the corresponding SAR images. The observations from SAR measurements are explained quantitatively by converting ground radar reflectivity into spaceborne radar attenuation via a theoretical model. In addition, polarization analysis comparing the SAR image to two additional TSX acquisitions 11 days apart and without rain provides an indication of storm-induced propagation effects on X-band SAR. Specifically, the copolar ratio Z_dr and the copolar correlation differences exhibit behavior that is better explained by the precipitation impact versus surface changes. Multiple regions with varying ground cover, including urban, and storm characteristics are analyzed to highlight the complexity of meteorological research using SAR while revealing a potential use of the technology to investigate the storm structure.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:48 ,  Issue: 10 )