By Topic

Analysis and Design Techniques for Supply-Noise Mitigation in Phase-Locked Loops

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Arakali, A. ; Broadcast Div., Silicon Labs., Inc., Sunnyvale, CA, USA ; Gondi, S. ; Hanumolu, P.K.

Supply noise affects the jitter performance of ring oscillator-based phase-locked loops (PLLs) significantly. While the focus of much of the prior art is on supply noise in oscillators, this paper illustrates that supply noise in other building blocks also contribute significantly to PLL output jitter. Analytical expressions for supply-noise sensitivities are derived for each of the circuit blocks used in the PLL and insight into the mechanism through which supply noise appears at the PLL output is provided. Efficient supply-regulation schemes that combine a split-tuned PLL architecture with an optimized low-dropout regulator to achieve better than -22 dB of worst case supply-noise sensitivity for the whole PLL are presented. Fabricated in a 0.18 μm digital CMOS process, the prototype PLL occupies an area of 0.18 μm and operates from a 1.8 V supply. At 1.5 GHz, the total power consumption is 3.3 mW, of which 0.54 mW is consumed in the regulators. The measured output peak-to-peak jitter is 33 ps and 41 ps with no supply noise and with a 100-mV amplitude supply noise tone injected at the worst case noise frequency, respectively.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:57 ,  Issue: 11 )