Cart (Loading....) | Create Account
Close category search window
 

Multiresolution Gauss-Markov random field models for texture segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Krishnamachari, S. ; Dept. of Image Process., COMSAT Lab., Clarksburg, MD, USA ; Chellappa, R.

This paper presents multiresolution models for Gauss-Markov random fields (GMRFs) with applications to texture segmentation. Coarser resolution sample fields are obtained by subsampling the sample field at fine resolution. Although the Markov property is lost under such resolution transformation, coarse resolution non-Markov random fields can be effectively approximated by Markov fields. We present two techniques to estimate the GMRF parameters at coarser resolutions from the fine resolution parameters, one by minimizing the Kullback-Leibler distance and another based on local conditional distribution invariance. We also allude to the fact that different GMRF parameters at the fine resolution can result in the same probability measure after subsampling and present the results for first- and second-order cases. We apply this multiresolution model to texture segmentation. Different texture regions in an image are modeled by GMRFs and the associated parameters are assumed to be known. Parameters at lower resolutions are estimated from the fine resolution parameters. The coarsest resolution data is first segmented and the segmentation results are propagated upward to the finer resolution. We use the iterated conditional mode (ICM) minimization at all resolutions. Our experiments with synthetic, Brodatz texture, and real satellite images show that the multiresolution technique results in a better segmentation and requires lesser computation than the single resolution algorithm

Published in:

Image Processing, IEEE Transactions on  (Volume:6 ,  Issue: 2 )

Date of Publication:

Feb 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.