By Topic

A Novel Clustering Approach Based on the Manifold Structure of Gene Expression Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jinlong Shi ; Sch. of Comput., Nat. Univ. of Defense Technol., Changsha, China ; Zhigang Luo

Clustering is an effective approach for computing analysis of gene expression data. Various of clustering algorithms have been developed to give reasonable interpretations of biological data and discover biological meaningful patterns of cellular functions. Based on the manifold structure of gene expression data analyzed under the framework of geometric representation, a novel clustering approach is presented to reveal the nonlinear expression patterns. The novel clustering approach can be divided into the following computing steps. The first step is to construct a neighborhood graph for gene expression points through which the approximate geodesic distances between each two points can be obtained. Then, instead of Euclidean distance, approximate geodesic distance is exploited to reveal the similarity between gene profiles. Finally, via defining the geodesic distance between a cluster and a gene expression point, new clusters can be generated after essential iterative processes. Application of the approach to the yeast cell-cycle dataset validates its rationality and efficiency.

Published in:

Bioinformatics and Biomedical Engineering (iCBBE), 2010 4th International Conference on

Date of Conference:

18-20 June 2010