By Topic

Selective area growth of III-V semiconductors: From fundamental aspects to device structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Sugiyama, M. ; Dept. of Electr. Eng. & Inf. Syst., Univ. of Tokyo, Tokyo, Japan

Fundamental aspects in the selective-area metal-organic vapor-phase epitaxy (MOVPE) of III-V semiconductors are presented in this paper, with an emphasis on the role of vapor-phase diffusion of a group-III precursor, which plays the dominant role for substantial modulation of an effective bandgap around wider (>100 μm) masks and is a characteristic of MOVPE that is operated close to atmospheric pressure. A single parameter, D/ks (vapor-phase mass diffusivity / surface incorporation rate coefficient), determines modulation of both thickness and composition of a layer. The value of D/ks can be regarded as an effective lateral diffusion length of a group-III precursor, and the value of ks can be decoupled from D/ks, providing insight to surface reaction kinetics of MOVPE. Coupling with reactor-scale distributions provides unique basis for the discussion of comprehensive reaction mechanism. The values of ks will be presented for basic materials composing InGaAsP system. Luminescence wavelength from multiple quantum wells (MQWs) around a given mask pattern can be simulated precisely based on a simple diffusion/reaction model and it is applicable to monolithic integration of devices using selective-area growth of InGaAsP-related materials. The same framework can be applied to III-nitride materials, and ks values for GaN growth have been obtained. Visible luminescence from InGaN/GaN MQWs on a patterned GaN template was red-shifted according to the mask width, for which only the thickness modulation of the InGaN wells has been suggested to be the governing mechanism.

Published in:

Indium Phosphide & Related Materials (IPRM), 2010 International Conference on

Date of Conference:

May 31 2010-June 4 2010