Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Searching Single Nucleotide Polymorphism Markers to Complex Diseases Using Genetic Algorithm Framework and a BoostMode Support Vector Machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Anekboon, K. ; Dept. of Math., Chulalongkorn Univ., Bangkok, Thailand ; Phimoltares, S. ; Lursinsap, C. ; Tongsima, S.
more authors

With the advent of large-scale high density single nucleotide polymorphism (SNP) arrays, case-control association studies have been performed to identify predisposing genetic factors that influence many common complex diseases. These genotyping platforms provide very dense SNP coverage per one chip. Much research has been focusing on multivariate genetic model to identify genes that can predict the disease status. However, increasing the number of SNPs generates large number of combined genetic outcomes to be tested. This work presents a new mathematical algorithm for SNP analysis called IFGA that uses a "BoostMode" support vector machine (SVM) to select the best set of SNP markers that can predict a state of complex diseases. The proposed algorithm has been applied to test for the association study in two diseases, namely Crohn's and severity spectrum of βo/Hb E Thalassemia diseases. The results revealed that our predicted SNPs can respectively best classify both diseases at 71.57% and 71.06% accuracy using 10-fold cross validation comparing with the optimum random forest (ORF) and classification and regression trees (CART) techniques.

Published in:

Bioinformatics and Biomedical Engineering (iCBBE), 2010 4th International Conference on

Date of Conference:

18-20 June 2010