By Topic

Computing the arc length of parametric curves

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Guenter, B. ; Georgia Inst. of Technol., Atlanta, GA, USA ; Parent, R.

Specifying constraints on motion is simpler if the curve is parameterized by arc length, but many parametric curves of practical interest cannot be parameterized by arc length. An approximate numerical reparameterization technique that improves on a previous algorithm by using a different numerical integration procedure that recursively subdivides the curve and creates a table of the subdivision points is presented. The use of the table greatly reduces the computation required for subsequent arc length calculations. After table construction, the algorithm takes nearly constant time for each arc length calculation. A linear increase in the number of control points can result in a more than linear increase in computation. Examples of this type of behavior are shown.<>

Published in:

Computer Graphics and Applications, IEEE  (Volume:10 ,  Issue: 3 )