By Topic

Design of a hybrid PID plus fuzzy controller for speed control of induction motors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
T. -J. Ho ; Department of Electrical Engineering, Chung Yuan Christian University, Chung-Li, Taiwan ; L. -Y Yeh

In this paper, a Ziegler-Nichols (Z-N) based PID plus fuzzy logic control (FLC) scheme is proposed for speed control of a direct field-oriented induction motor (DFOIM). The Z-N PID is adopted because its parameter values can be chosen using a simple and useful rule of thumb. The FLC is connected to the PID controller for enhancing robust performance in both dynamic transient and steady-state periods. The FLC is developed based on the output of the PID controller, and the output of the FLC is the torque command of the DFCIM. The complete closed-loop speed control scheme is implemented for the laboratory 0.14-hp squirrel-cage induction motor. Experimental results demonstrate that the proposed Z-N PID+FLC scheme can lead to desirable robust speed tracking performance under load torque disturbances.

Published in:

2010 5th IEEE Conference on Industrial Electronics and Applications

Date of Conference:

15-17 June 2010