By Topic

Next-generation OFDMA-based passive optical network architecture supporting radio-over-fiber

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yu-Min Lin ; Inf. & Commun. Res. Labs., Ind. Technol. Res. Inst., Hsinchu, Taiwan ; Po-Lung Tien

In this paper, we propose a novel architecture for next-generation orthogonal frequency division multiple access (OFDMA)-based passive optical networks (PON's), referred to as ROFPON. Besides carrying local broadband OFDMA data, ROFPON seamlessly supports radio-over-fiber (RoF) transports between the central office and multiple remote antennas at end users without using costly WDM lasers. We analytically and experimentally study the receiver sensitivity to OFDMA signals and the radio frequency (RF) signal's performance. By corroborating simulation results with experimental results, we discuss the determination of crucial system parameters, such as the optimal broadband-to-radio power ratio, and the exploitation of a notch filter for removing RF interference. Experimental results show that the integrated 10 Gb/s OFDMA and three 20 MHz RF signals are successfully transported both downstream and upstream over a 20 km single-mode-fiber PON. Finally, experimental results demonstrate that QPSK-encoded WiMAX format RF signals are transmitted/relayed upstream with E-O-E conversion at each optical network unit (ONU), and received error-free at the optical line terminal after cascading 32 ONU's.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:28 ,  Issue: 6 )